

Machine learning improvements for robotic applications in industrial context

case study of autonomous sorting

Doctor of Philosophy thesis defense

presented by Joris Guérin

on December 10 2018

Jury

M. Olivier PIETQUIN, Professeur des universités, Google Brain Paris
M. Jean-Pierre GAZEAU, Ingénieur de recherche, Université de Poitiers
M. Lorenzo NATALE, Maître de conférences, Instituto Italiano di Tecnologia
M. Ivan LAPTEV, Directeur de recherche, INRIA Paris
M. Byron BOOTS, Maître de conférences, Georgia Institute of Technology
M. Olivier GIBARU, Professeur des universités, Arts et Métiers ParisTech

M. Stéphane THIERY, Maître de conférences, Arts et Métiers ParisTech

M. Éric NYIRI, Maître de conférences, Arts et Métiers ParisTech

Rapporteur Rapporteur Examinateur Examinateur Examinateur Invité Invité

Table of content

1. Introduction

- 2. Image clustering
- 3. Image acquisition
- 4. Model independent trajectory learning
- 5. Conclusion

Outline

1. Introduction

- 2. Image clustering
- 3. Image acquisition
- 4. Model independent trajectory learning
- 5. Conclusion

Robots in industry

Current use

- ► Repeatable
- Precise
- Fast

Limitations

- Not adaptive
- Confined environment
- Large production batches

New context

- Industry 4.0
- Mass customization
- Human-robot collaboration

New goals

Robotic applications more flexible, more robust, easier to program

Tasks

Manufacturing,

ng, assembly, metrology, **Sorting**, ...

Technological bricks

Scene understandingObject understandingObject localizationGraspingTrajectory generationPath planningMetrology

Unsupervised Robotic Sorting

Robotic sorting

Improve flexibility

Required technical bricks

Scene segmentation (Shi et al., 2016)

Data acquisition

Data clustering

Grasping (Bohg et al., 2014)

Object localization

Trajectory generation

Decision making pipeline

Gap-ratio Weigthed K-means

- Color and shape features
- Robust to lighting condition

Proposed pipeline

→ More expressive representation: Images

Image acquisition

- Multi-view sorting
- Optimal view selection

Image Clustering

- Feature extraction
- Deep ensemble clustering

Outline

1. Introduction

2. Image clustering

3. Image acquisition

4. Model independent trajectory learning

5. Conclusion

What is Image Clustering (IC)?

Other uses:

- ▶ Searching web image databases (Avrithis et al., 2015),
- ▶ Medical image classification (Wang et al., 2017),
- ▶ Video storyline reconstruction (Kim et al., 2014), ...

Current approach

Never studied

- Cross validation impossible
- Satisfying results
- Trained on the same dataset

Concentrate most research

- DEC,
- ► IDEC,
- ► JULE, ...

Many pretrained CNN available

Does it have an impact?

(Liu et al., 2016), (Wang et al., 2017), (Gong et al., 2015), (Hu et al., 2017)

Questions

- Choice of CNN architecture?
- Choice of cutting layer?
- Relation to other design choices?

(Simonyan and Zisserman, 2014), (He et al., 2016), (Szegedy et al., 2016), (Chollet, 2016)

Standard algorithms

Centroid based K-means

Connectivity based

Agglomerative

(Xu and Wunsch, 2005), (Arthur and Vassilvitskii, 2007), (Murtagh, 1983)

Task	Dataset	# images	# classes	Balanced
Natural object	VOC2007	2841	20	No
Natural Object	COIL100	7200	100	Yes
Scono	Archi	4794	25	No
Scene	MIT	15620	67	No
Fine grained	Flowers	400	17	Yes
Fille-grained	Birds	2800	200	No
Face	UMist	564	20	Yes
I ace	FEI	6033	200	Yes

Supervised datasets → External validation metrics

Normalized Mutual $NMI(Y, C) = \frac{2 \times I(Y, C)}{H(Y) + H(C)}$

Cluster purity $PUR(Y, C) = \frac{1}{N} \sum_{c \in C} \max_{y \in Y} |c \cap y|$

Between 0 and 1 - Higher is better

Machine learning improvements for industrial robotics

Cutting layer's influence

Architecture's influence

Overall results

Architecture-task interaction

Cutting layer choice

- Last layer before softmax
- For all datasets

CNN architecture choice

- No simple rules
- No cross validation

Could it be useful to combine them?

Complementarity of architectures? - Intuition

Pretrained on the same dataset But Different ways to solve a task

UMist face dataset

	NMI	PUR	FM	FM _{C4}
InceptionResnet	0.775	0.642	0.537	0.442
VGG16	0.689	0.550	0.372	0.653
Densenet121	0.684	0.553	0.384	0.700

2d t-SNE visualization (Maaten and Hinton, 2008)

Machine learning improvements for industrial robotics

First experiments

Ensemble method (Vega-Pons and Ruiz-Shulcloper, 2011)

Experiments

▶ 1 to 10 pretrained CNNs

Densenet, Inception-resnet, NasNet

4 datasets from 4 tasks

VOC2007, Archi, Flowers, UMist

First results

Evolution of the NMI score and total time (in sec) for different numbers of pretrained CNN feature extractors.

Deep Multi-View Clustering

JULE

- Jointly learns feature representation and cluster assignments
- Adapted initialization for Multi-View data

Image clustering

Results

Evaluation: $MIX_{\alpha} = \alpha NMI + (1 - \alpha) PUR$

Average results across all 8 datasets

Method	MIX _{0.5} score
Ours	0.749
$Best\ Net + JULE$	0.740
Worst Net + JULE	0.611
Leader~Net+JULE	0.706
$Best\ Net + Agg$	0.712
MVEC + JULE	0.724
CC + JULE	0.703
MVEC + Agg	0.711

→ State of the art results on most studied datasets

Outline

- 1. Introduction
- 2. Image clustering

3. Image acquisition

- 4. Model independent trajectory learning
- 5. Conclusion

Problem statement

Early implementation of URS

Problem statement

- Top-down perpendicular views
- Xception + Agglomerative

Robustness testing

Robustness testing dataset

Artificially modified brightness

Multiple poses approach

Ensemble clustering pipeline

Results

DI C1			BLC2				DI CO			
		BLCI	Dark+	Dark	Normal	Bright	Bright+	BLC3	BLC4	BLC5
NMI	MV	0.95	0.91	1.00	1.00	0.96	0.84	0.95	0.84	0.95
	SV	0.86	0.77	0.88	0.90	0.84	0.73	0.84	0.69	0.83

View selection problem

Importance of view selection:

Building a large multi-view dataset

Example: 1 object in 1 pose

Views are parameterized by two angles θ and φ

Dataset statistics

# Classes	# Object/class	# Poses/object	# Views/pose
	(total)	(total)	(total)
29	4-6 (144)	3 (432)	17-22 (9112)

Conclusion

Fitting a "Clusterability score" to the images

Estimating the quality of an image for clustering

- Sample *N* clustering problem (3×10^7)
- ► For each clustering problem *cp*:
 - Compute the individual Fowlkes-Mallows index of each image:

$$FMI_{cp}^{i} = \frac{(Fowlkes and Mallows, 1983)}{\sqrt{(TP_{i}+FP_{i})(TP_{i}+FN_{i})}}$$

Compute the Monte Carlo estimate of the clusterability index:

$$S(I) = \sum_{cp} FMI'_{cp}/N'_{cp}$$

 N_{cp}^{I} , number of cp in which I is present

Qualitative validation

Training a clusterability score predictor

Network architecture

Data splitting

Clusterability index fitting	24 classes			
Neural network parameter selection	Training: 19	Testing: 5		
Semantic View Predictor validation	5 classes			

Results

Quantitative results

		FM	NMI	PUR
	TOP	0.44	0.51	0.70
XCE_AGG	RAND	0.48	0.56	0.74
	SV-net	0.55	0.63	0.78

Qualitative evaluation

Example top views

Associated SV-net selections

Machine learning improvements for industrial robotics

Outline

1. Introduction

2. Image clustering

3. Image acquisition

4. Model independent trajectory learning

5. Conclusion

Image acquisition

Towards fully functional URS

Scene segmentation (Shi et al., 2016)

Object localization

Image acquisition

Image clustering

Grasping (Bohg et al., 2014)

Trajectory generation

Model independent trajectory learning

Objectives

Build a trajectory learning framework which is

- Independent of the studied system
- Sample efficient

Practical example

- Angular position control
- Cartesian cost
- Independence of:
 - Robot geometry
 - Tool orientation
 - Robot location

Overview of the iLQR method

Trajectory definition

Optimization process

 $\begin{array}{rcl} x_{t+1} = F_t(x_t, u_t) & \longleftarrow & 1^{st} \text{ order Taylor expansion} \\ l_t = L_t(x_t, u_t) & \longleftarrow & 2^{nd} \text{ order Taylor expansion} \end{array}$

Use **dynamic programming** to optimize the controller to take actions that minimize the cost.

(Li et al., 2004)

Compute Taylor expansion of the cost

(b) Including the distance d_t in the state representation. (Levine et al., 2015)

(c) Learning the quadratic approximation of the cost.

Practical example

Model independent trajectory learning - target reaching task

Outline

- 1. Introduction
- 2. Image clustering
- 3. Image acquisition
- 4. Model independent trajectory learning
- 5. Conclusion

Conclusion and open problems

Image Clustering

- Multiple pretrained CNNs improve results
- DMVC is state-of-the-art
 - → Transfer to other tasks?
 - → Study properties of training parameters?

Image Acquisition

- Multiple views increase robustness
- Semantic view selection
 - → Multiple view selection?

Trajectory learning

- Model independent method
 - → Integrate in a global framework

Publications

Journal

 Guérin et al., "Unsupervised robotic sorting: Towards autonomous decision making robots", International Journal of Artificial Intelligence & Applications (IJAIA), March 2018

Conferences

- Guérin and Boots, "Improving Image Clustering with Multiple Pretrained CNN Feature Extractors", proceedings of BMVC 2018, Newcastle, UK. (29.9% acceptance)
- Guérin et al., "Semantically Meaningful View Selection", proceedings of IROS 2018, Madrid, Spain. (46.7% acceptance)
- Guérin et al., "CNN features are also great at unsupervised classification", proceedings of AIFU 2018, Melbourne, Australia.
- Guérin et al., "Automatic Construction of Real-World Datasets for 3D Object Localization using Two Cameras", proceedings of IECON 2018, Washington D.C., USA.
- Guérin et al., "Learning local trajectories for high precision robotic tasks: application to KUKA LBR iiwa Cartesian positioning", proceedings of IECON 2016, Florence, Italy
- Guérin et al., "Locally optimal control under unknown dynamics with learnt cost function: application to industrial robot positioning", Journal of Physics: Conference Series.
- Guérin et al., "Clustering for different scales of measurement: the gap-ratio weighted K-means algorithm", proceedings of AIAP 2017, Vienna, Austria

Machine learning improvements for robotic applications in industrial context

case study of autonomous sorting

Doctor of Philosophy thesis defense

presented by Joris Guérin

on December 10 2018

Jury

M. Olivier PIETQUIN, Professeur des universités, Google Brain Paris
M. Jean-Pierre GAZEAU, Ingénieur de recherche, Université de Poitiers
M. Lorenzo NATALE, Maître de conférences, Instituto Italiano di Tecnologia
M. Ivan LAPTEV, Directeur de recherche, INRIA Paris
M. Byron BOOTS, Maître de conférences, Georgia Institute of Technology
M. Olivier GIBARU, Professeur des universités, Arts et Métiers ParisTech

M. Stéphane THIERY, Maître de conférences, Arts et Métiers ParisTech

M. Éric NYIRI, Maître de conférences, Arts et Métiers ParisTech

Rapporteur Rapporteur Examinateur Examinateur Examinateur Invité Invité

t-Distributed Stochastic Neighbor Embedding

Ν

Low dimensional space

$$q_{ij} = rac{(1+||y_i-y_j||^2)^{-1}}{\sum\limits_k \sum\limits_{l
eq k} (1+||y_k-y_l||^2)^{-1}}$$

$$egin{aligned} & \text{Minimize} \quad \textit{KL}(P||Q) = \sum_i \sum_{j
eq i} p_{ij} \log rac{p_{ij}}{q_{ij}} \end{aligned}$$

Student's t-distribution

- Random initialization
- Gradient descent
- Preserves local structures
- Little dependant on tunable parameters

(Maaten and Hinton, 2008)

Joint Unsupervised Learning of Deep Representations and Image Clusters (Yang et al., 2016)

Unsupervised data in input space

Unsupervised data in output space

Joris Guérin

Machine learning improvements for industrial robotics

New representation

2d t-SNE visualization of the features extracted from the UMist dataset at different stages of the DMVC framework.

(a) Densenet169 features

(b) D169 + JULE

Image acquisition

View parameterization

Procedure:

- 3D camera
- Bounding box
- ▶ 75% of the image
- Parameterization

